The course will employ a variety of instructional methods to accomplish its objectives, including some of the following: lecture, labs, field work, analysis and interpretation of surface weather charts and satellite images, multimedia, individual and/or team projects and small group discussions.
1. Introduction
Scientific method
Systems theory and its application to planet Earth
Sun / Earth geometry
2. Solar Energy and Radiation Laws
First Law of Thermodynamics
Electromagnetic radiation
Wien鈥檚 Displacement Law, Stephan-Boltzmann Law and the Inverse Square Law
Variation in the receipt of solar radiation
3. The Earth's Atmosphere
Evolution of the modern atmosphere
Classification of the atmosphere
Anthropogenic atmospheric pollutants and their effects
4. Energy Concepts, Energy Balance
Second Law of Thermodynamics
Energy transfer, transmission and absorption
Heat energy concepts
Radiation and energy balances
5. Temperature Variation
Influences on temperature
Temperature patterns
Measurement of temperature
6. Pressure and Atmospheric Circulation
Pressure and its variation, distribution and measurement
Gas Law
Forces influencing the direction and speed of upper level and surface winds
Patterns of atmospheric and oceanic circulation
Macro- and meso-scale winds
7. Moisture in the Atmosphere
Indices of water vapour content
Methods and forms of condensation
Mechanisms and forms of precipitation
8. Adiabatic Processes and Stability
Diabatic and adiabatic processes
Lapse rates
Concept and types of stability
9. Air Masses, Fronts, Mid-latitude Cyclones
Air mass formation, classification and modification
Front types, formation and characteristics
Development, evolution and movement of mid-latitude cyclones
Anticyclones
10 Severe Weather
Characteristics and life-cycles of air mass and severe thunderstorms
Tornado formation, characteristics and dimensions
Hurricane development, characteristics, structure, forecasts and damage
11. Biogeography
Ecological biogeography and its relationship to climatic patterns
Abiotic and biotic influences on primary productivity in various ecosystems
Trophic relationships in ecosystems
Stages of general ecological succession in ecosystems
12. Climate Change
Evidence for past climate variation
Urban heat island
Atmospheric greenhouse effect and critical analyses of global warming predictions
Local actions to reduce greenhouse gas emissions
At the conclusion of the course the successful student will be able to:
- Describe and use the frameworks of science applicable to 1st-year physical geography.
- Think critically and examine climatological, meteorological and biogeographical issues in a scientific context at local, regional and global scales.
- Describe and explain the processes that occur within earth鈥檚 atmosphere, hydrosphere and biosphere systems, and identify and describe interactions among these systems.
- Communicate effectively using the language, graphical presentation methods and quantitative methods employed in physical geography.
- Connect theoretical applications to 鈥渞eal-world鈥 observations and measurements.
The evaluation will be based on course objectives and will be carried out in accordance with 榴莲视频 policy. The instructor will provide a written course outline with specific evaluation criteria during the first week of classes.
An example of a possible evaluation scheme would be:
Laboratory Assignments | 10% |
Laboratory Exams | 30% |
Midterm Exam | 25% |
Final Exam | 25% |
Term Project | 10% |
Total | 100% |
Note: This course received a standing variance from Education Council in June 2016 to allow up to a 20% lab exam during the last 14 calendar days of the semester. This is not a final exam; it is an assessment of student learning of lab work performed in the second half of the semester.
Texts will be updated periodically. Typical examples are:
- Christopherson, R. W., Birkeland, G., Byrne, M.L. and P. Giles (2016). Geosystems: An Introduction to Physical Geography, Fourth Canadian Edition. Pearson /Prentice Hall.
- Lutgens, F.K., Tarbuck, E.J., and D.G. Tasa (2016). Atmosphere: An Introduction to Meteorology, Thirteenth Edition. Pearson /Prentice Hall.