

			If Revision, Section(s) Revised:	 С, Н
C:	Math 2421	D:	Date of Previous Revision: Date of Current Revision: Introduction to Differential Equations	June 30, 2002 September 2004 E: 3

Subject & Course No	Deceminitize Title	Somester Credite
Subject & Course no.	Describuve rule	Semester Credits

F: Calendar Description: Calendar Description: This is a first course in ordinary differential equations. Topics include the theory and applications of linear and non-linear ordinary differential equations (ODE's) and systems of ODE's. Formal solution methods are investigated as well as power series, Laplace transform, matrix and numerical/computer methods. Qualita

Allocation of Contact Hours to Type of Instruction / Learning Settings Lecture 3 – 4 hours/week	Ν	Aath 1220 and Math 2232 or special permission
	I: C	ourse Corequisites:
	J: C	ourse for which this Course is a Prerequisite
for each descriptor)	N	one
4	K : M	Iaximum Class Size:
Number of Weeks per Semester:	3:	5
15		
L: PLEASE INDICATE:		
Non-Credit		
College Credit Non-Transfer		
X College Credit Transfer:		I

	Page 2 of 3
M:	Course Objectives / Learning Outcomes
	Upon completion of this course a student will be expected to:
	identify and solve first order separable, homogeneous, exact, linear, Bernoulli and Ricatti equations determine the existence and uniqueness of a solution of a first order initial value problem
	determine families of solution curves and their orthogonal trajectories set up and solve differential equations involving motion, population growth, chemical
	reactions/mixing, electrical circuits etc. determine whether or not a set of function is linearly independent. Understand and use the properties of the Wronskian
	reduce the order of a higher order DE from the information of a known solution identify and solve homogeneous linear constant coefficient DE's and Cauchy Euler DE's
use differential operator notation to express DE's	
	solve non-homogeneous DE's using method of undetermined coefficients and variation of parameters analyze and describe all aspects of harmonic motion; damping, resonance, forced motion
	use power series to find representations for solutions of a DE near an ordinary point use the method of Frobenius to solve DE's near regular singular points (optional)
	use the definition of the Laplace transform to verify its properties
	determine Laplace transforms of simple functions, derivatives, integrals, step and impulse functions with the use of tables, determine inverse Laplace transforms
	use convolution and translation theorems to find Laplace transforms and their inverses solve and verify properties of DE's using Laplace transforms
	solve systems of DE's using Laplace transforms or operator techniques
	reduce a higher order linear DE to a first order linear system of DE's
	use matrix methods to solve first order autonomous linear systems of DE's
	find stationary point(s) of a DE
	determine the stability of a solution near a stationary point
	analyze and discuss trajectories in the phase plane generate analytical, graphical or numerical output from a computer algebra system (MAPLE) to assist in the analysis of a DE
N۰	Course Content:

- N: Course Content:
 - 1. First Order Differential Equations: separable, homogeneous, exact, linear, Bernoulli and Ricatti equations and applications.
 - 2. Higher Order Linear Differential Equations: General theory, reduction of order, homogeneous constant coefficient and Cauchy-Euler equations, undetermined coefficients and variation of parameters methods for non-homogeneous equations.
 - 3.