		If Re	Revision, Section(s) wised:	С, Н	
		Da Da	te of Previous Revision: te of Current Revision:	May 1997 September 2004	
C:	MATH 2230 D: Discrete Ma	thema	tics II	E: 3	
	Subject & Course No. , g				
	enerating functions, equivalence relations, partial orders, partitions, graphs and trees, cycles and paths, shortest-path algorithms, minimal spanning trees, tree traversal and applications of trees and graphs.				
G:	Allocation of Contact Hours to Type of Instruction	H:	Course Prerequisites:		
	/ Learning Settings		MATH 1130		
	Primary Methods of Instructional Delivery and/or				
	Learning Settings:	I:	Course Corequisites:		
	Lecture		None		
			Tone		
	for each descriptor)	J:	Course for which this Cou	rse is a Prerequisite	
	4 hours per week		Nona	-	
	+ nouis per week		None		
	Number of Weeks per Semester:	K:	Maximum Class Size:		
	15		35		
L:	PLEASE INDICATE:	l			
	Non-Credit				
	College Credit Non-Transfer				
	X College Credit Transfer:				
I	SEE BC TRANSFER GUIDE FOR TRANSFER DETA				

M: Course Objectives / Learning Outcomes

The student should be able to: determine whether a set is countable or uncountable; demonstrate Cantor's diagonalization process; devise recursive algorithms and compare with iterative algorithms; use a loop invariant to prove that a program segment is correct; determine the worst-case and average-case complexity of a simple algorithm; determine the number of ordered and unordered selections of r elements chosen with and without repetition from a set with *n* elements; determine the permutations of sets with indistinguishable objects; enumerate the ways distinguishable objects can be placed into distinguishable boxes; develop an algorithm to generate permutations of a set; develop a recurrence relation to model a problem; solve recurrence relations iteratively; solve linear homogeneous recurrence relations with constant coefficients of degree two; verify solutions to linear inhomogeneous recurrence relations; determine the big-O of divide-and-conquer recurrence algorithms such as the binary search; apply the inclusion-exclusion principle to problems with more than two sets; use the principle of inclusion-exclusion to solve counting problems modeled after the problem of finding the number of integer solutions of a linear equation with constraints; solve counting problems modeled after the number of onto functions from one finite set to another; count the number of derangements of a set and solve counting problems based on this principle; derive generating functions for a sequence; use ordinary and exponential generating functions to solve counting problems; use a generating function to solve a recurrence relation; determine if a relation is an equivalence relation; determine the equivalence classes of an equivalence relation; determine if a collection of subsets is a partition of a given set;

- N: Course Content:
 - 1. Infinite Sets, Computability and Recursion
 - 1.1. Cardinality of infinite sets
 - 1.2. Recursion and iteration
 - 1.3. Complexity of algorithms
 - 1.4. Program correctness
 - 2. Advanced Counting
 - 2.1. Permutations and combinations with repetition
 - 2.2. Indistinguishable and distinguishable objects
 - 2.3. Recurrence relations
 - 2.4. Solving first and second order linear recurrence relations
 - 2.5. Generating functions
 - 2.6. Solving recurrence relations using generating functions
 - 2.7. Solving counting problems using generating functions
 - 2.8. Divide-and-conquer relations
 - 2.9. Applications of inclusion-exclusion
 - 3. Relations
 - 3.1. Equivalence relations and partitions
 - 3.2. Partial orderings and Hasse diagrams

4. Graphs

- 4.1. Representations
- 4.2. Connectivity
- 4.3. Euler and Hamilton paths
- 4.4. Shortest path problems
- 5. Trees
 - 5.1. Applications
 - 5.2. Tree traversals
 - 5.3. Trees and sorting
 - 5.4. Spanning trees
 - 5.5. Minimum spanning trees

5.5.

R: Prie	Prior Learning Assessment and Recognition: specify whether course is open for PLAR				
No	ne				
Course Des	signer(s) Natasha Davidson	Education Council / Curriculum Committee Representative			
Dean / Dire	ector Des Wilson	Registrar Trish Angus			
© Douglas College All Rights Reserved					

© Douglas College. All Rights Reserved.