			EFFECTIVE: SEPTEMBER 2004 CURRICULUM GUIDELINES		
A.	. Division: Instructional		Effective Date: September 2004		
			If Revision Revised: G	, Section(s)	
			Date of Pre	evious Revision:	May 16, 1994
			Date of Cu	rrent Revision:	November 27, 2003
C:	CHEM 2310	D :	Physical Chemistry		E: 5
	Subject & Cou	rse No.	Descriptive Title	Sem	nester Credits

F:t 10.02 0 0 10.02 120.0141 442.4402 Tm(pTJ0.02 0 0 10.02 127.7978 442.4402 Tm(cs i)TJ0.02 0 0 10.02 141.4503 442.4402 Tm

M: Course Objectives / Learning Outcomes:

With the aid of tables of thermodynamic data, a periodic table, an equation sheet and a calculator the student will be able to:

- 1. solve problems of the following types:
 - a) ideal gas law and equations of state for non-ideal gases
 - b) First Law problems involving gases (ideal and real)
 - c) thermochemical problems (e.g., finding U, q and w for a given chemical or physical change)
 - d) entropy changes in physical and chemical changes
 - e) calculation and use of thermodynamic equilibrium constants at various temperatures and pressures for homogeneous and heterogeneous equilibria
 - f) calculation of Gibbs and Helmholtz energy changes for physical and chemical processes
 - g) application of thermodynamics to solutions (eg. Raoult's Law, chemical potential, mixing, activities and colligative properties)
- 2. give mathematical and written statements of the first, second, and third laws of thermodynamics
- 3. define or explain any of the terms used in the course (eg. State function, reversible process)
- 4. given the balanced equation for a reaction, predict whether the reaction is spontaneous or not. 0 10.98 550

- 4. <u>Application of the First Law: Thermochemistry</u> Standard states, measurement of H, calorimetry, relationship between U and H, temperature dependence of H, enthalpies of formation, bond strengths.
- 5. <u>The Second and Third Laws of Thermodynamics</u> Carnot cycle, efficiency of heat engines, entropy, calculation of S, temperature and volume dependence of S, molecular interpretation of S; the Third Law and absolute entropies.
- 6. The Gibbs Energy

Gibbs and Helmholtz functions, Gibbs energies of formation, pressure and temperature dependence of G, fugacity, thermodynamic limits to energy conversion.

- <u>Chemical Equilibrium</u> Thermodynamic equilibrium constant, K_c,K_p, calculations involving equilibrium in homogeneous and heterogeneous systems, degree of dissociation, temperature dependence of K.
- 8. <u>Phases and Solutions</u> Phase equilibria in one-component systems, Clapeyron, and Clausius-Clapeyc

P: Textbooks and Materials to be Purchased by Students:

Text: Laidler, K.J., Meiser, J.H., and Sancturary, B.C. Physical Chemistry 4