

EFFECTIVE: SEPTEMBER 2004 CURRICULUM GUIDELINES

A.	Division:	Academic	Effective Date:		September, 2004	
B.	Department / Program Area:	Science and Technology	Revision	X	New Course	
	-		If Revision, Section(s) Revised:		С, Н, Ј, Р	
			Date of Previous Revision Date of Current Revision		October 31, 2002 September 2004	
C:	CHEM 1210	D: Chemical Energetics and Dynamics			E: 5	
	Subject & Cour	rse No. Descript	Descriptive Title		Semester Credits	

F: Calendar Description:

Topics studied will include liquids, solids, a review of redox reactions, solutions, electrochemistry, the laws of thermodynamics, equilibrium, acids and bases, ionic equilibria and chemical kinetics.

Allocation of Contact Hour

J: Course for which this Course is a Prerequisite

CHEM 2303 and CHEM 2310 and CHEM 320

Laboratory Objectives

The student will be able to:

- 1. Give the name and describe the use of some of the more common laboratory equipment.
- 2. Perform accurately standard laboratory techniques using the accepted methods, such as titration, weighing, pipetting.
- 3. Give the random and systematic errors inherent in each of the common quantitative techniques which are used in the laboratory.
- 4. Given an experimental problem, state the series of steps and the accepted techniques required to solve that problem in the laboratory.
- 5. Write a report based on observations and data obtained in the laboratory using a standard report format.
- 6. Given a set of experimental data or using data obtained in the laboratory, apply the appropriate mathematical techniques (e.g. graphical analysis, solution of equations, etc.) necessary to obtain a numerical result.
- 7. 7.7.7.7.7.

Laboratory Course Content

- 1. Redox Reactions
- 2. Solids

- Solids
 Electrochemistry
 Thermodynamics
 Equilibrium
 Spectrophotometric determinations
 7.