

EFFECTIVE: JANUARY 2004 CURRICULUM GUIDELINES

Α.	Division: Science and Technology			Effective Date: March, 2003		
В.	Department / Program Area: Chemistry			Revision	X New Course	
	nica. Chemistry			If Revision, Section(s) Revised: G,H		
				Date of Previous Revision: January 13, 2003		
				Date of Current Revision	: March 7, 2003	
C:	CHEM 110	D:	The Structure of	f Matter	E: 5	
	Subject & Course No.		Descriptive	e Title	Semester Credits	
F:	Calendar Description:					
	This					n

the modern view of atomic structure,

M: Course Objectives / Learning Outcomes

Upon completion of this course, the students will:

- 1. Carry out measurements using the correct number of significant figures, and express the precision using absolute or relative uncertainties.
- 2. Given a set of experimental data, calculate the average value, the average deviation, and the standard deviation.
- 3. Solve stoichiometry problems of the following types: percentage composition/empirical formula, gram-gram or gram-volume (of a gas), solution stoichiometry, limiting reactant, problems involving two simultaneous or two sequential reactions.
- 4. Explain the Bohr theory of atomic structure.
- 5. Give the electronic configuration of any of the common elements in the periodic table.
- 6. Given a periodic table, explain the relative sizes, ionization energies, and electron affinities of the elements.
- 7. Explain and be able to apply the following concepts to covalent bonds: dipole moment, electronegativity, percent ionic character.
- 8. Draw Lewis electron dot structures for a given molecule. The molecule may exhibit resonance, or

molecules; Valence Bond Theory: hybridization, orbital diagrams; Molecular Orbital Theory: shapes and energies of molecular orbitals, bond order, intermolecular forces, and hydrogen bonding.

4. Or ganic Chemistry Nomenclature; identification and physical proper R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR